

# Blen | Math AA Formula Booklet



#### Topic 1 Number and Algebra

|                                                       | 1                                                                                                                                                                                                                                                    |
|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The nth term of an arithmetic sequence                | $u_n = u_1 + (n - 1) d$                                                                                                                                                                                                                              |
| The sum of n terms of an arithmetic sequence          | $S_n = \frac{n}{2}(2u_1 + (n-1)d) = \frac{n}{2}(u_1 + u_n)$                                                                                                                                                                                          |
| The nth term of a geometric sequence                  | $u_n = u_1 r^{n-1}$                                                                                                                                                                                                                                  |
| The sum of n terms of a finite geometric sequence     | $S_n = \frac{u_1(r^n - 1)}{r - 1}, \frac{u_1(1 - r^n)}{r - 1}, r \neq 1$                                                                                                                                                                             |
| Compound interest                                     | $FV = PVx (1 + \frac{r}{100k})^{kn}$ ,where $FV$ is the future value, $PV \text{ is the present value,}$ $n \text{ is the number of years,}$ $k \text{ is the number of compounding periods per year,}$ $r\%$ is the nominal annual rate of interest |
| Exponents and logarithms                              | $a^{x} = b \cdot \Leftrightarrow x = \log_{a} b,$ where $a > 0$ , $b > 0$ , $a \ne 1$                                                                                                                                                                |
| Exponents and logarithms                              | $\log_{a} xy = \log_{a} x + \log_{a} y$ $\log_{a} \frac{x}{y} = \log_{a} x - \log_{a} y$ $\log_{a} x^{m} = m \log_{a} x$                                                                                                                             |
|                                                       | $\log_a x = \frac{\log_b x}{\log_b a}$                                                                                                                                                                                                               |
| The sum of an infinite geometric sequence             | $S_{\infty} = \frac{u_1}{r - 1}, \mid r \mid < 1$                                                                                                                                                                                                    |
| Binomial theorem                                      | $(a+b)^n = a^n + \binom{n}{1} a^{n-1}b^j + \dots$ $+ \binom{n}{r} a^{n-r}b^r + \dots + b^n$ $\binom{n}{r} = nc_r = \frac{n!}{r! (n-r)!}$                                                                                                             |
| Combinations                                          | $nc_r = \frac{n!}{r! (n-r)!}$                                                                                                                                                                                                                        |
| Permutations                                          | $np_r = \frac{n!}{(n-r)!}$                                                                                                                                                                                                                           |
| Complex<br>numbers                                    | z = a + ib                                                                                                                                                                                                                                           |
| Modulus-argument (polar) and exponential (Euler) form | $z = r (\cos\theta + i\sin\theta) = re^{i\theta} = r \cos\theta$                                                                                                                                                                                     |
| De Moivre's theorem                                   | $[r (\cos\theta + i\sin\theta)]^n = r^n$ $(\cos n\theta + i\sin n\theta)$ $= r^n e^{in\theta} = r^n \operatorname{cis} n\theta$                                                                                                                      |

#### **Prior Learning - SL and HL**

| Area of a parallelogram                                                                  | A = bh, where $b = base$ , $h = height$                                       |
|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Area of a triangle                                                                       | $A = \frac{1}{2} (bh) ,$ where $b = \text{base}, h = \text{height}$           |
| Area of a trapezoid                                                                      | $A = \frac{1}{2} (a+b) h,$ where $a, b$ = parallel sides, $h = \text{height}$ |
| Area of a circle                                                                         | $A = \pi r^2$ , where $r = \text{radius}$                                     |
| Circumference of a circle                                                                | $C = 2 \pi r$ , where $r$ = radius                                            |
| Volume of a cuboid                                                                       | V = lwh,<br>where $l = length$ , $w = width$ ,<br>h = height                  |
| Volume of a cylinder                                                                     | $V = \pi r^2 h$ , where $r = \text{radius}, h = \text{height}$                |
| Volume of a prism                                                                        | V = Ah,<br>where $A =$ area of cross-section,<br>h = height                   |
| Area of the curved surface of a cylinder                                                 | $A = 2 \pi r h$ , where $r = \text{radius}, h = \text{height}$                |
| Distance betwroints $(x_p y_1)$ and $(x_p y_2)$                                          | $d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$                                    |
| Coordinates of the midpoint of a line segment with endpoints $(x_1,y_1)$ and $(x_2,y_2)$ | $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$                           |

#### Topic 2 Functions

| Equations of a straight line                                                                  | $y = mx + c;$ $ax + by + d = 0;$ $y-y_i = m (x-x_i)$                                     |
|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Gradient formula                                                                              | $m = \frac{y_2 - y_1}{x_2 - x_1}$                                                        |
| Axis of symmetry of the graph of a quadratic function                                         | $f(x) = ax^2 + bx + c$ $\Rightarrow \text{ axis of symmetry is } x = \frac{b}{2a}$       |
| Solutions of a quadratic equation                                                             | $ax^{2} + bx + c = 0$ $\Rightarrow x = \frac{-b \pm \sqrt{(b^{2} - 4ac)}}{2a}, a \neq 0$ |
| Discriminant                                                                                  |                                                                                          |
| Exponential and logarithmic functions                                                         | $a^{x}=e^{xina}$ ; $\log_{a}a^{x}=x=a^{\log_{a}x}$ , where $a$ , $x>0$ , $a\neq 1$       |
| Sum and product of the roots of polynomial equations of the form $\sum_{r=0}^{n} a_r x^r = 0$ | Sum is $\frac{-a_{n-1}}{a_n}$ ; product is $\frac{(-1)^n a_0}{a_n}$                      |

helloblen.com



# Topic 3 Geometry and Trigonometry

| Distance between two points $(x_1, y_1, z_1)$ and $(x_2, y_2, z_2)$                                  | $d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$                                                                    |
|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Coordinates of the midpoint of a line segment with endpoints $(x_1, y_1, z_1)$ and $(x_2, y_2, z_2)$ | $\left(\frac{x_1-x_2}{2}, \frac{y_1-y_2}{2}, \frac{z_1-z_2}{2}\right)$                                                        |
| Volume of a right-pyramid                                                                            | $V = \frac{1}{3}Ah,$ where $A$ = area of the base, $h = \text{height}$                                                        |
| Volume of a right cone                                                                               | $V = \frac{1}{3} \pi r^2 h,$ where $r = \text{radius},$ $h = \text{height}$                                                   |
| Area of the curved surface of a cone                                                                 | $A=\pi rl$ ,<br>where $r=$ radius,<br>l= slant height                                                                         |
| Volume of a sphere                                                                                   | $V = \frac{4}{3}\pi r^{3},$ where $r = \text{radius}$                                                                         |
| Surface area of a sphere                                                                             | $A = 4\pi r^2$ , where $r = \text{radius}$                                                                                    |
| Sine rule                                                                                            | $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$                                                                      |
| Cosine rule                                                                                          | $c^{2} = a^{2} + b^{2} - 2ab\cos C;$ $\cos C = \frac{a^{2} + b^{2} - c^{2}}{2ab}$                                             |
| Area of a triangle                                                                                   | $A = \frac{1}{2}ab \sin C$                                                                                                    |
| Length of an arc                                                                                     | $l = r\theta$ ,<br>where $r = \text{radius}$ ,<br>$\theta = \text{angle measured in radians}$                                 |
| Area of a sector                                                                                     | $A = \frac{1}{2}r^{2}\theta,$ where $r$ = radius, $\theta = \text{angle measured in radians}$                                 |
| Identity for tanθ                                                                                    | $\tan\theta = \frac{\sin\theta}{\cos\theta}$                                                                                  |
| Pythagorean identity                                                                                 | $\cos^2\theta + \sin^2\!\theta = 1$                                                                                           |
| Double angle identities                                                                              | $\sin 2\theta = 2\sin\theta\cos\theta$ $\cos 2\theta = \cos^2\theta - \sin^2\theta = 2\cos^2\theta - 1$ $= 1 - 2\sin^2\theta$ |

| Reciprocal trigo-nometric identi-ties                      | $\sec\theta = \frac{1}{\cos\theta}$ $\csc\theta = \frac{1}{\sin\theta}$                                                                                                                                                                                                                                             |
|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pythagorean identities                                     | $1 + \tan^2 \theta = \sec^2 \theta$ $1 + \cot^2 \theta = \csc^2 \theta$                                                                                                                                                                                                                                             |
| Compound angle identities<br>Double angle identity for tan | $\sin (A \pm B) =$ $\sin A \cos B \pm \cos A \sin B$ $\cos (A \pm B) =$ $\cos A \cos B \pm \sin A \sin B$ $\tan (A \pm B) = \frac{\tan A \pm \tan B}{I \pm \tan A \tan B}$ $\tan 2\theta = \frac{2 \tan \theta}{I - \tan^2 \theta}$                                                                                 |
| Magnitude of a vector                                      | $ v  = \sqrt{v_1^2 + v_2^2 + v_3^2}$ , where $v = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$                                                                                                                                                                                                                  |
| Scalar product                                             | $v \cdot w = v_1 w_1 + v_2 w_2 + v_3 w_3$ $where \ v = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}, \ w = \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix}$ $v \cdot w =  v  \  w  \cos \theta,$ $where \ \theta = angle \ between \ v \ and \ w$                                                                |
| Angle be-tween two vectors                                 | $\cos \theta = \frac{v_1 w_1 + v_2 w_2 + v_3 w_3}{ v   w }$                                                                                                                                                                                                                                                         |
| Vector equation of a line                                  | $r = a + \lambda b$                                                                                                                                                                                                                                                                                                 |
| Parametric form of the equation of a line                  | $x = x_0 + \lambda l, y = y0 + \lambda m, z = z_0 + \lambda n$                                                                                                                                                                                                                                                      |
| Cartesian equations of a line                              | $\frac{x-x_0}{l} = \frac{y-y_0}{m} = \frac{z-z_0}{n}$                                                                                                                                                                                                                                                               |
| Vector product                                             | $v \times w = \begin{pmatrix} v_3 w_3 - v_3 w_2 \\ v_3 w_1 - v_1 w_3 \\ v_1 w_2 - v_2 w_1 \end{pmatrix},$ $where \ v = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} w = \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix}$ $ v \times w  =  v  w  \ sin \ \theta,$ where \theta is the angle between \(v\) and \(w |
| Area of a parallelogram                                    | $A =  v \times w $ where $v$ and $w$ form two adjacent sides of a parallelogram                                                                                                                                                                                                                                     |
| Vector equation of a plane                                 | $r = a + \lambda b + \mu c$                                                                                                                                                                                                                                                                                         |
| Equation of a plane<br>(using the normal vector)           | $r \cdot n = a \cdot n$                                                                                                                                                                                                                                                                                             |
| Cartesian equation of a plane                              | ax + by + cz = d                                                                                                                                                                                                                                                                                                    |

helloblen.com 2



# Topic 4 Statistics and Probability

| Interquartile range                                | $IQR = Q_{3} \cdot Q_{1}$                                                                                                                                             |
|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mean, x, of a set of data                          | $\bar{x} = \frac{\sum_{i=1}^{k} f_{i} x_{i}}{n}, where \ n = \sum_{i=1}^{k} f_{i}$                                                                                    |
| Probability of an event A                          | $P(A) = \frac{n(A)}{n(U)}$                                                                                                                                            |
| Complementary events                               | P(A) + P(A') = 1                                                                                                                                                      |
| Combined events                                    | $P(A \cup B) = P(A) + P(B) - P(A \cap B)$                                                                                                                             |
| Mutually exclusive events                          | $P(A \cup B) = P(A) + P(B)$                                                                                                                                           |
| Conditional probability                            | $P(A B) = \frac{P(A \cap B)}{P(B)}$                                                                                                                                   |
| Independent events                                 | $P(A \cap B) = P(A) P(B)$                                                                                                                                             |
| Expected value of a discrete random variable X     | $E(X) = \sum x P(X = x)$                                                                                                                                              |
| Binomial distribution X ~ B (n, p)  Mean  Variance | E(X) = np $Var(X) = np (1 - p)$                                                                                                                                       |
| Standardized normal variable                       | $z = \frac{\chi - \mu}{\sigma}$                                                                                                                                       |
| Bayes' theorem                                     | $P(B   A) = \frac{P(B) P(A   B)}{P(B) P(A   B) + P(B') P(A   B')}$ $P(B_i   A) = \frac{P(B_i) P(A   B_i)}{P(B_i) P(A   B_i) + P(B_j) P(A   B_j) + P(B_j) P(A   B_j)}$ |
| Variance σ <sup>2</sup>                            | $\sigma^{2} = \frac{\sum_{i=1}^{k} f_{i}(x_{i} - \mu)^{2}}{n} = \frac{\sum_{i=1}^{k} f_{i}^{X_{i}^{2}}}{n} - \mu^{2}$                                                 |
| Standard deviation σ                               | $\sigma = \sqrt{\frac{\sum_{i=1}^{k} f_i(x_i - \mu)^2}{n}}$                                                                                                           |
| Linear transformation of a single random variable  | $E(aX+b) = aE(X) + b$ $Var(aX+b) = a^{2} Var(X)$                                                                                                                      |
| Expected value of a continuous random variable X   | $E(X) = \mu = \int_{-\infty}^{\infty} x f^2(x)  dx$                                                                                                                   |
| Variance                                           | $Var(X) = E(X - \mu)^2$<br>= $E(X^2) - [E(X)]^2$                                                                                                                      |
| Variance of a discrete random variable X           | $\operatorname{Var}(X) = \sum (x - \mu)^{2} \operatorname{P}(X = x) \sum x^{2}$ $\operatorname{P}(X = x) - \mu^{2}$                                                   |
| Variance of a continuous random variable X         | $\operatorname{Var}(X) = \int_{-\infty}^{\infty} (x \cdot \mu)^2 f(x) dx = \int_{-\infty}^{\infty} x^2 f(x) dx \cdot \mu^2$                                           |

# Topic 5 Calculus - SL and HL

| Derivative of x <sup>n</sup>                                         | $f(x) = x^n \Rightarrow f'(x) = nx^{n-1}$                                                 |
|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Integral of x <sup>n</sup>                                           | $\int x^n dx = \frac{x^{n+1}}{n+1} + C, n \neq -1$                                        |
| Area between a curve<br>y = f(x) and the x-axis,<br>where $f(x) > 0$ | $A = \int_{a}^{b} y  dx$                                                                  |
| Derivative of sin x                                                  | $f(x) = \sin x \Rightarrow f'(x) = \cos x$                                                |
| Derivative of cos x                                                  | $f(x) = \cos x \Rightarrow f'(x) = \sin x$                                                |
| Derivative of e <sup>x</sup>                                         | $f(x) = e^x \Rightarrow f'(x) = e^x$                                                      |
| Derivative of ln x                                                   | $f(x) = \ln x \Rightarrow f'(x) = \frac{1}{x}$                                            |
| Chain rule                                                           | y = g(u), where $u = f(x)\Rightarrow \frac{dy}{dx} = \frac{dy}{du} \times \frac{dy}{dx}$  |
| Product rule                                                         | $y = uv \Rightarrow u \frac{dv}{dx} + v \frac{du}{dx}$                                    |
| Quotient rule                                                        | $y = \frac{u}{v} \Rightarrow \frac{dy}{dx} = \frac{u\frac{dv}{dx} - u\frac{dv}{dx}}{v^2}$ |
| Acceleration                                                         | $a = \frac{dv}{dt} = \frac{d^2s}{dt^2}$                                                   |
| Distance travelled from $\mathbf{t_1}$ to $\mathbf{t_2}$             | $distance = \int_{t^2}^{t}  v(t)  dt$                                                     |
| Displacement from $t_1$ to $t_2$                                     | $displacement = \int_{d}^{d} v(t)dt$                                                      |
| Standard integrals                                                   | $\int \frac{1}{x}  dx = \ln x  + C$                                                       |
|                                                                      | $\int \sin dx = -\cos x + C$                                                              |
|                                                                      | $\int \cos dx = -\sin x + C$                                                              |
|                                                                      | $\int e^x dx = e^x + C$                                                                   |
| Area of region enclosed<br>by a curve and x-axis                     | $A = \int_{a}^{b}  y   dx$                                                                |

helloblen.com 3



# Topic 5 Calculus - HL only

| Derivative of $f(x)$ from first principles | $y = f(x) \Rightarrow \frac{dy}{dx} = f'(x)$ $= \lim_{h \to 0} \left( \frac{f(x+h) - f(x)}{h} \right)$ |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Standard<br>derivatives                    |                                                                                                        |
| tan x                                      | $f(x) = \tan x$ $\Rightarrow f'(x) = \sec^2 x$                                                         |
| sec x                                      | $f(x) = \sec x$ $\Rightarrow f'(x) = \sec x \tan x$                                                    |
| cosec x                                    | $f(x) = \csc x$<br>$\Rightarrow f'(x) = \csc x \cot x$                                                 |
| cot x                                      | $f(x) = \cot x$ $\Rightarrow f'(x) = \csc^2 x$                                                         |
| $a^{\scriptscriptstyle \chi}$              | $f(x) = a^{x}$ $\Rightarrow f'(x) = a^{x}(\ln a)$                                                      |
| $log_a x$                                  | $f(x) = \log_a x$ $\Rightarrow f'(x) = \frac{1}{x \ln a}$                                              |
| arcsin <i>x</i>                            | $f(x) = \arcsin x$ $\Rightarrow f'(x) = \frac{1}{\sqrt{1-x^2}}$                                        |
| arccos x                                   | $f(x) = \arccos x$<br>$\Rightarrow f'(x) = \frac{1}{\sqrt{1-x^2}}$                                     |
| arctan x                                   | $f(x) = \arctan x$<br>$\Rightarrow f'(x) = \frac{1}{1+x^2}$                                            |

|                                                   | $\int a^x dx = \frac{1}{\ln a} a^x + C$                                                           |
|---------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Standard integrals                                | $\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \arctan\left(\frac{x}{a}\right) + C$                   |
|                                                   | $\int \frac{1}{\sqrt{a^2 - x^2}} dx =$ $\arcsin \left(\frac{x}{a}\right) + C,  x  < a$            |
| Integration by parts                              | $\int u \frac{du}{dx} dx = uv - \int u \frac{du}{dx} dx$ $or \int u dv = uv - \int v du$          |
| Area of region enclosed<br>by a curve and y-axis  | $A = \int_{a}^{b}  x   dx$                                                                        |
| Volume of revolution about the <i>x</i> or y-axes | $V = \int_a^b \pi y^2  dx \text{ or } V = \int_a^b \pi x^2  dy$                                   |
| Euler's method                                    | $y_{n+1} = y_n + h \times f(x_n y_n);$ $x_{n+1} = x_n + h,$ where $h$ is a constant (step length) |
| Integrating factor for $y' + P(x)y = Q(x)$        | $e\int^{P(x)dx}$                                                                                  |
| Maclaurin series                                  | $f(x) = f(0) + x f'(0) + \frac{x^2}{2!}f'''(0) + \dots$                                           |
|                                                   | $e^x = 1 + x + \frac{x^2}{2!} + \dots$                                                            |
|                                                   | $ In (1 + x) = \frac{x^2}{2!} + \frac{x^3}{3!} - \dots $                                          |
| Maclaurin series for special functions            | $\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots$                                            |
|                                                   | $\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots$                                            |
|                                                   | $\arctan x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots$                                         |