Prior Learning - SL and HL

Area of a parallelogram	$A=b h,$ where $b=$ base, $h=$ height
Area of a triangle	$\begin{gathered} A=\frac{1}{2}(b h), \\ \text { where } b=\text { base, } h=\text { height } \end{gathered}$
Area of a trapezoid	$\begin{gathered} \qquad A=\frac{1}{2}(a+b) h, \\ \text { where } a, b=\text { parallel sides, } \\ h=\text { height } \end{gathered}$
Area of a circle	$A=\pi r^{2}$, where $r=$ radius
Circumference of a circle	$C=2 \pi r$, where $r=$ radius
Volume of a cuboid	$\begin{gathered} V=l w h, \\ \text { where } l=\text { length, } w=\text { width }, \\ h=\text { height } \end{gathered}$
Volume of a cylinder	$\begin{gathered} V=\pi r^{2} h, \\ \text { where } r=\text { radius, } h=\text { height } \end{gathered}$
Volume of a prism	$V=A h,$ where $A=$ area of cross-section, $h=\text { height }$
Area of the curved surface of a cylinder	$A=2 \pi r h,$ where $r=$ radius, $h=$ height
Distance betwroints $\left(x_{r} y_{1}\right)$ and $\left(x_{2} y_{2}\right)$	$d=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$
Coordinates of the midpoint of a line segment with endpoints $\left(x_{p} y_{1}\right) \text { and }\left(x_{2} y_{2}\right)$	$\left(\frac{x_{l}}{-2}+x_{2}, y_{l} \underline{y}_{\underline{l}}+y_{2}^{2} \underline{2}\right)$

Prior Learning - HL ONLY

	The solutions of

Topic 1 Number and Algebra

The nth term of an arithmetic sequence	$u_{n}=u_{1}+(n-1) d$
The sum of n terms of an arithmetic sequence	$S_{n}=\frac{n}{2}\left(2 u_{1}+(n-1) d\right)=\frac{n}{2}\left(u_{1}+u_{n}\right)$
The nth term of a geometric sequence	$u_{n}=u_{1} r^{n-1}$
The sum of n terms of a finite geometric sequence	$S_{n}=\frac{u_{1}\left(r^{n}-1\right)}{r-1}, \frac{u_{1}\left(1-r^{n}\right)}{r-1}, r \neq 1$
Compound interest	$F V=P V x\left(1+\frac{r}{100 k}\right)^{k n}$,where $F V$ is the future value, $P V$ is the present value, n is the number of years, k is the number of compounding periods per year, $r \%$ is the nominal annual rate of interest
Exponents and logarithms	$\begin{aligned} a^{x}=b \cdot \Leftrightarrow & =\log _{a} b \text {, where } a>0, b \\ & >0, a \neq 1 \end{aligned}$
Percentage Error	$\varepsilon=\left\|\frac{v_{A}-v_{E}}{v_{E}}\right\| \times 100 \%,$ where v_{E} is the exact value and v_{A} is the approximate value of v
Laws of logarithms	$\log _{a} x y=\log _{a} x+\log _{a} y$ $\log _{a} \frac{x}{y}=\log _{a} x-\log _{a} y$ $\log _{a} x^{m}=m \log _{a} x$ for $a, x, y>0$
The sum of an infinite geometric sequence	$S_{\infty}=\frac{u_{l}}{r-1},\|r\|<1$
Complex numbers	$z=a+i b$
Discriminant	$\Delta=b^{2}-4 a c$
Modulus-argument (polar) and exponential (Euler) form	$z=r(\cos \theta+i \sin \theta)=r e^{i \theta}=r \operatorname{cis} \theta$
Determinant of a 2×2 matrix	$A=\left(\begin{array}{ll} a & b \\ c & d \end{array}\right) \Rightarrow \operatorname{det} A=\|A\|=a d-b c$
Inverse of a $\mathbf{2} \times 2$ matrix	$\begin{gathered} A=\left(\begin{array}{ll} a & b \\ c & d \end{array}\right) \Rightarrow \\ A^{-1}=\frac{1}{\operatorname{det} A}\left(\begin{array}{cc} d & -b \\ -c & a \end{array}\right), a d \neq b c \end{gathered}$
Power formula for a matrix	$M^{n}=P D^{n} P^{-1},$ where P is the matrix of eigenvectors and D is the diagonal matrix of eigenvalues

Topic 2 Functions

Equations of a straight line	$y=m x+c ;$ $a x+b y+d=0 ;$ $y-y_{1}=m\left(x-x_{1}\right)$
Gradient formula	$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
Axis of symmetry of the graph of a quadratic function	\Rightarrow axis of symmetry is $x=\frac{-b}{2 a}$
	$f(x)=a x^{2}+b x+c$
Logistic function	$f(x)=\frac{L}{1+C e^{-k x}, L, k, C>0}$

Topic 3 Geometry and Trigonometry

Distance between two points $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$	$d=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}}$
Coordinates of the midpoint of a line segment with endpoints $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$	$\left(\frac{x_{1}-x_{2}}{2}, \frac{y_{1}-y_{2}}{2}, \frac{z_{1}-z_{2}}{2}\right)$
Volume of a right-pyramid	$\begin{gathered} V=\frac{1}{3} A h, \\ \text { where } A=\text { area of the base, } \\ h=\text { height } \end{gathered}$
Volume of a right cone	$\begin{gathered} V=\frac{1}{3} \pi r^{2} h, \\ \text { where } r=\text { radius, } h=\text { height } \end{gathered}$
Area of the curved surface of a cone	$A=\pi r l$, where $r=$ radius, $l=$ slant height
Volume of a sphere	$V=\frac{4}{3} \pi r^{3},$ where $r=$ radius
Surface area of a sphere	$\begin{gathered} A=4 \pi r^{2}, \\ \text { where } r=\text { radius } \end{gathered}$
Sine rule	$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Cosine rule	$\begin{gathered} c^{2}=a^{2}+b^{2}-2 a b \cos C ; \\ \cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b} \end{gathered}$
Area of a triangle	$A=\frac{1}{2} a b \sin C$
Length of an arc	$\begin{gathered} l=\frac{\theta}{360} \times 2 \pi r, \\ \text { where } r=\text { radius, } \\ \theta=\text { angle measured in degrees } \end{gathered}$
Area of a sector	$\begin{gathered} A=\frac{\theta}{360} \times \pi r^{2}, \\ \text { where } r=\text { radius, } \\ \theta=\text { angle measured in degrees } \end{gathered}$

Length of an arc	$l=r \theta$, where $r=$ radius, $\theta=$ angle measured in radians
Area of a sector	$\begin{gathered} A=\frac{1}{2} r^{2} \theta, \text { where } r=\text { radius, } \theta=\text { angle } \\ \text { measured in radians } \end{gathered}$
Identities	$\begin{gathered} \cos ^{2} \theta+\sin ^{2} \theta=1 \\ \tan \theta=\frac{\sin \theta}{\cos \theta} \end{gathered}$
Transformation matrices	$\left(\begin{array}{cc} \cos 2 \theta & \sin 2 \theta \\ \sin 2 \theta & -\cos 2 \theta \end{array}\right),$ reflection in the line $y=(\tan \theta) x$ $\left(\begin{array}{ll}k & 0 \\ 0 & 1\end{array}\right)$, horizontal stretch/ stretch parallel to x - axis with a scale factor of k $\left(\begin{array}{ll}1 & 0 \\ 0 & k\end{array}\right)$, vertical stretch/ stretch parallel to y - axis with a scale factor of k $\left(\begin{array}{cc}k & 0 \\ 0 & k\end{array}\right)$, enlargement with a scale factor of k, centre $(0,0)$ $\left(\begin{array}{cc} \cos 2 \theta & -\sin \theta \\ \sin 2 \theta & \cos \theta \end{array}\right) \text {, anticlockwise/ }$ counterclockwise rotation of angle θ about the origin $(\theta>0)$ $\left(\begin{array}{cc}\cos 2 \theta & \sin \theta \\ -\sin 2 \theta & \cos \theta\end{array}\right)$, clockwise rotation of angle θ about the origin $(\theta>0)$
Magnitude of a vector	$\|v\|=\sqrt{v_{1}{ }^{2}+v_{2}{ }^{2}+v_{3}{ }^{2}}$, where $v=\left(\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right)$
Vector equation of a line	$r=a+\lambda b$
Parametric form of the equation of a line	$x=x_{0}+\lambda l, y=y_{0}+\lambda m, z=z_{0}+\lambda n$
Scalar product	$\begin{gathered} v \cdot w=v_{1} w_{1}+v_{2} w_{2}+v_{3} w_{3^{\prime}} \\ \text { where } v=\left(\begin{array}{l} v_{1} \\ v_{2} \\ v_{3} \end{array}\right), w=\left(\begin{array}{l} w_{1} \\ w_{2} \\ w_{3} \end{array}\right) \\ v \cdot w=\|v\|\|w\| \cos \theta, \end{gathered}$ where $\theta=$ angle between v and w
Angle be-tween two vectors	$\cos \theta=\frac{v_{1} w_{1}+v_{2} w_{2}+v_{3} w_{3}}{\|v\|\|w\|}$
Vector product	$\begin{gathered} v \times w=\left(\begin{array}{c} v_{2} w_{3}-v_{3} w_{2} \\ v_{3} w_{1}-v_{1} w_{3} \\ v_{1} w_{2}-v_{2} w_{1} \end{array}\right), \\ \text { where } v=\left(\begin{array}{c} v_{1} \\ v_{2} \\ v_{3} \end{array}\right) w=\left(\begin{array}{l} w_{1} \\ w_{2} \\ w_{3}^{2} \end{array}\right) \\ \|v \times w\|=\|v\|\|w\| \sin \theta, \text { where } \theta \\ \text { is the angle between } v \text { and } w \end{gathered}$
Area of a parallelogram	$A=\|v \times w\|$ where v and w form two adjacent sides of a parallelogram

Topic 4 Statistics and probability

Interquartile range	$I Q R=Q_{3}-Q_{1}$
Mean, \bar{x}, of a set of data	$\bar{x}=\frac{\sum_{i=1}^{k} \mathrm{f}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}}{n} \text {, where } n=\sum_{i=1}^{\mathrm{k}} \mathrm{f}_{\mathrm{i}}$
Probability of an event \boldsymbol{A}	$P(A)=\frac{n(A)}{n(U)}$
Complementary events	$P(A)+P\left(A^{\prime}\right)=1$
Combined events	$P(A \cup B)=P(A)+P(B)-P(A \cap B)$
Mutually exclusive events	$P(A \cup B)=P(A)+P(B)$
Conditional probability	$P(A \mid B)=\frac{P(A \cap B)}{P(B)}$
Independent events	$P(A \cap B)=P(A) P(B)$
Expected value of a discrete random variable X	$\mathrm{E}(X)=\Sigma x \mathrm{P}(X=x)$
Binomial distribution $X \sim B(n, p)$ Mean Variance	$\begin{gathered} \mathrm{E}(X)=n p \\ \operatorname{Var}(X)=n p(1-p) \end{gathered}$
Linear transformation of a single random variable	$\begin{aligned} & \mathrm{E}(a X+b)=a \mathrm{E}(X)+b \\ & \operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X) \end{aligned}$
Linear combinations of \mathbf{n} independent random variables, $\boldsymbol{X}_{\boldsymbol{p}}, \boldsymbol{X}_{2}, \ldots \boldsymbol{X}_{3}$	$\begin{gathered} \mathrm{E}\left(a_{1} X_{1} \pm a_{2} X_{2} \pm \ldots \pm a_{n} X_{n}\right) \\ =a_{1} \mathrm{E}\left(X_{1}\right) \pm a_{2} \mathrm{E}\left(X_{2}\right) \pm \ldots \pm a_{n} \mathrm{E}\left(X_{n}\right) \\ \\ \operatorname{Var}\left(a_{1} X_{1} \pm a_{2} X_{2} \pm \ldots \pm a_{n} X_{n}\right) \\ =a_{1}^{2} \operatorname{Var}\left(X_{1}\right)+a_{2}^{2} \operatorname{Var}\left(X_{2}\right)+\ldots+ \\ a_{\mathrm{n}}^{2} \operatorname{Var}\left(X_{n}\right) \end{gathered}$
Sample statistics Unbiased estimate of population variance \boldsymbol{S}_{n-l}^{2}	$s_{n-1}^{2}=\frac{n}{n-1}=s_{n}^{2}$
Poisson distribution $X \sim \operatorname{Po}(\mathrm{~m})$ Mean Variance	$\begin{gathered} \mathrm{E}(X)=m \\ \operatorname{Var}(X)=m \end{gathered}$
Transition matrices	$T^{n} S_{0}=s_{n}$, where s_{0} is the initial state

Topic 5 Calculus

Derivative of x^{n}	$f(x)=x^{n} \Rightarrow f^{\prime}(x)=n x^{n-1}$
Integral of x^{n} Area between a curve $\boldsymbol{y}=f(x)$ and the x -axis, where $f(x)>0$	$\begin{gathered} \int x^{n} d x=\frac{x^{n+1}}{n+1}+C, n \neq-1 \\ \mathrm{~A}=\int_{a}^{b} y d x \end{gathered}$
The trapezoidal rule	$\begin{gathered} \int_{a}^{b} y d x \approx \frac{1}{2} h\left\{\left(y_{0}+y_{n}\right)+\right. \\ \left.2\left(y_{1}+y_{2}+\ldots+y_{n-1}\right)\right\} \\ \text { Where } h=\frac{b-a}{n} \end{gathered}$
Derivative of $\sin x$	$f(x)=\sin x \Rightarrow f^{\prime}(x)=\cos x$
Derivative of $\cos x$	$f(x)=\cos x \Rightarrow f^{\prime}(x)=-\sin x$
Derivative of e^{x}	$f(x)=e^{x} \Rightarrow f^{\prime}(x)=e^{x}$
Derivative of $\ln x$	$f(x)=\ln x \Rightarrow f^{\prime}(x)=\frac{1}{x}$
Chain rule	$\begin{gathered} y=g(u), \text { where } u=f(x) \Rightarrow \\ \frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x} \end{gathered}$
Product rule	$y=u v \Rightarrow u \frac{d v}{d x}+\frac{d u}{d x}$
Quotient rule	$y=\frac{\mathrm{u}}{\mathrm{v}} \Rightarrow \frac{d v}{d x}=\frac{u \frac{d v}{d x}+\frac{d u}{d x}}{v^{2}}$
Standard integrals	$\int \frac{1}{\mathrm{x}} d x=\ln \|x\|+C$
	$\int \sin d x=-\cos x+C$
	$\int \cos d x=-\sin x+C$
	$\frac{1}{\cos 2 x}=\tan x+C$
	$\int e^{x} d x=e^{x}+C$
Area of region enclosed by a curve and x or y-axes	$A=\int_{a}^{b}\|y\| d x \text { or } A=\int_{a}^{b}\|x\| d y$
Volume of revolution about the x or y-axes	$V=\int_{a}^{b} \pi y^{2} d x \text { or } V=\int_{a}^{b} \pi x^{2} d y$
Acceleration	$a \Rightarrow \frac{d v}{d t}=\frac{d^{2} s}{d t^{2}}=v \frac{d v}{d s}$
Distance travelled from \boldsymbol{t}_{1} to \boldsymbol{t}_{2}	$\text { distance }=\int_{t_{1}}^{t_{t}}\|v(t)\| d t$
Displacement from \boldsymbol{t}_{1} to \boldsymbol{t}_{2}	$\text { displacement }=\int_{t_{1}, v}^{t_{2}} v(t) d t$
Euler's method	$y_{n+1}=y_{n}+h \times f\left(x_{n} y_{n}\right) ; x_{n+1}=x_{n}+$ h, where h is a constant (step length)
Euler's method for coupled systems	$\begin{gathered} x_{n+1}=x_{n}+h \times f\left(x_{n} y_{n} t_{n}\right) ; \\ y_{n+1}=y_{n}+h \times f\left(x_{n} y_{n} t_{n}\right) ; \\ t_{n+1}=t_{n}+h \end{gathered}$ where h is a constant (step length)
Exact solution for coupled linear differential equations	$\mathrm{x}=\mathrm{Ae}^{\lambda_{11} \mathrm{t}} p_{1}+\mathrm{Be}^{\lambda_{22} t} p_{2}$

