

Blen | Math Al Formula Booklet

Prior Learning - SL and HL

Area of a parallelogram	A = bh, where $b = base$, $h = height$
Area of a triangle	$A = \frac{1}{2} (bh) ,$ where $b = \text{base}, h = \text{height}$
Area of a trapezoid	$A = \frac{1}{2} (a+b) h ,$ where a, b = parallel sides, $h = \text{height}$
Area of a circle	$A = \pi r^2$, where $r = \text{radius}$
Circumference of a circle	$C = 2 \pi r$, where r = radius
Volume of a cuboid	V = lwh, where $l = length$, $w = width$, h = height
Volume of a cylinder	$V = \pi r^2 h$, where $r = \text{radius}, h = \text{height}$
Volume of a prism	V = Ah, where $A =$ area of cross-section, h = height
Area of the curved surface of a cylinder	$A = 2 \pi r h$, where $r = \text{radius}$, $h = \text{height}$
Distance betwroints (x_p, y_1) and (x_p, y_2)	$d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$
Coordinates of the midpoint of a line segment with endpoints (x_1,y_1) and (x_2,y_2)	$\left(\frac{x_{\underline{l}}+x_{\underline{2}}}{2}, \frac{y_{\underline{l}}+y_{\underline{2}}}{2}\right)$

Prior Learning - HL ONLY

Solutions of a quadratic equation	The solutions of $ax^{2}+bx+c=0$ are $x=\frac{-b\pm\sqrt{b^{2}-4ac}}{2a}, a\neq 0$

Topic 1 Number and Algebra

Number and Alger	ла
The <i>n</i> th term of an arithmetic sequence	$u_n = u_1 + (n-1) d$
The sum of <i>n</i> terms of an arithmetic sequence	$S_n = \frac{n}{2}(2u_1 + (n-1)d) = \frac{n}{2}(u_1 + u_n)$
The <i>n</i> th term of a geometric sequence	$u_n = u_j r^{n-1}$
The sum of <i>n</i> terms of a finite geometric sequence	$S_n = \frac{u_j(r^n - 1)}{r - 1}, \frac{u_j(1 - r^n)}{r - 1}, r \neq 1$
Compound interest	$FV = PVx (1 + \frac{r}{100k})^{kn}$,where FV is the future value, $PV \text{ is the present value},$ $n \text{ is the number of years},$ $k \text{ is the number of compounding}$ $periods \text{ per year},$ $r\%$ is the nominal annual rate of interest
Exponents and logarithms	$a^{x} = b \cdot \Leftrightarrow x = \log_{a} b$, where $a > 0$, $b > 0$, $a \ne 1$
Percentage Error	$\varepsilon = \left \frac{v_A \cdot v_E}{v_E} \right \times 100\%,$ where v_E is the exact value and v_A is the approximate value of v
Laws of logarithms	$\log_{a} xy = \log_{a} x + \log_{a} y$ $\log_{a} \frac{x}{y} = \log_{a} x - \log_{a} y$ $\log_{a} x^{m} = m \log_{a} x$ $for \ a, x, y > 0$
The sum of an infinite geometric sequence	$S_{\infty} = \frac{u_I}{r - I}, r < I$
Complex numbers	z=a+ib
Discriminant	$\Delta = b^2 - 4ac$
Modulus-argument (polar) and exponential (Euler) form	$z = r (\cos\theta + i\sin\theta) = re^{i\theta} = r \operatorname{cis}\theta$
Determinant of a 2×2 matrix	$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \Rightarrow \det A = A = ad - bc$
Inverse of a 2 × 2 matrix	$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \Rightarrow$ $A^{-1} = \frac{1}{\det A} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}, ad \neq bc$
Power formula for a matrix	$M^n = PD^n P^{-1}$, where P is the matrix of eigenvectors and D is the diagonal matrix of eigenvalues

helloblen.com

Topic 2 Functions

Equations of a straight line	$y = mx + c;$ $ax + by + d = 0;$ $y - y_1 = m (x-x_1)$
Gradient formula	$m = \frac{y_2 - y_1}{x_2 - x_1}$
Axis of symmetry of the graph of a quadratic function	$f(x) = ax^2 + bx + c$ $\Rightarrow \text{ axis of symmetry is } x = \frac{-b}{2a}$
Logistic function	$f(x) = \frac{L}{1 + Ce^{kx}}, L, k, C > 0$

Topic 3 Geometry and Trigonometry

Distance between two points (x_1, y_1, z_1) and (x_2, y_2, z_2)	$d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$
Coordinates of the midpoint of a line segment with endpoints (x_1, y_1, z_1) and (x_2, y_2, z_2)	$\left(\frac{x_1-x_2}{2}, \frac{y_1-y_2}{2}, \frac{z_1-z_2}{2}\right)$
Volume of a right-pyramid	$V = \frac{1}{3}Ah,$ where $A = \text{area of the base},$ $h = \text{height}$
Volume of a right cone	$V = \frac{1}{3} \pi r^2 h,$ where $r = \text{radius}, h = \text{height}$
Area of the curved surface of a cone	$A = \pi r l$, where $r = \text{radius}$, $l = \text{slant height}$
Volume of a sphere	$V = \frac{4}{3} \pi r^{3},$ where $r = \text{radius}$
Surface area of a sphere	$A=4\pi r^2$, where $r=$ radius
Sine rule	$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$
Cosine rule	$c^{2} = a^{2} + b^{2} - 2ab\cos C;$ $\cos C = \frac{a^{2} + b^{2} - c^{2}}{2ab}$
Area of a triangle	$A = \frac{1}{2} ab \sin C$
Length of an arc	$l = \frac{\theta}{360} \times 2\pi r,$ where $r = \text{radius},$ $\theta = \text{angle measured in degrees}$
Area of a sector	$A = \frac{\theta}{360} \times \pi r^{2},$ where $r = \text{radius},$ $\theta = \text{angle measured in degrees}$

Length of an arc	$l=r\theta$, where $r=$ radius, $\theta=$ angle measured in radians
Area of a sector	$A = \frac{1}{2} r^2 \theta$, where $r = \text{radius}$, $\theta = \text{angle}$ measured in radians
Identities	$\cos^2 \theta + \sin^2 \theta = 1$ $\tan \theta = \frac{\sin \theta}{\cos \theta}$
Transformation matrices	$(\cos 2\theta \sin 2\theta),$ reflection in the line $y = (\tan \theta)x$ $\binom{k}{0} 1, \text{ horizontal stretch/ stretch parallel to x- axis with a scale factor of } k$ $\binom{1}{0} k, \text{ vertical stretch/ stretch parallel to y- axis with a scale factor of } k$ $\binom{k}{0} k, \text{ enlargement with a scale factor of } k$ $\binom{k}{0} k, \text{ enlargement with a scale factor of } k, \text{ centre } (\theta, 0)$ $\binom{\cos 2\theta}{\sin 2\theta} \frac{-\sin \theta}{\cos \theta}, \text{ anticlockwise/counterclockwise rotation of angle } \theta$ about the origin $(\theta > 0)$ $\binom{\cos 2\theta}{-\sin 2\theta} \frac{\sin \theta}{\cos \theta}, \text{ clockwise rotation of angle } \theta$ about the origin $(\theta > 0)$
Magnitude of a vector	$ v = \sqrt{v_1^2 + v_2^2 + v_3^2}$, where $v = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$
Vector equation of a line	$r = a + \lambda b$
Parametric form of the equation of a line	$x = x_0 + \lambda l, y = y_0 + \lambda m, z = z_0 + \lambda n$
Scalar product	$v \cdot w = v_1 w_1 + v_2 w_2 + v_3 w_3$ $\text{where } v = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}, w = \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix}$ $v \cdot w = v w \cos \theta,$ $\text{where } \theta = \text{angle between } v \text{ and } w$
Angle be-tween two vectors	$\cos \theta = \frac{v_1 w_1 + v_2 w_2 + v_3 w_3}{ v w }$
Vector product	$v \times w = \begin{pmatrix} v_2 w_3 - v_3 w_2 \\ v_3 w_1 - v_1 w_3 \end{pmatrix},$ $v_1 w_2 - v_2 w_1$ where $v = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} w = \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix}$ $ v \times w = v w \sin \theta, \text{ where } \theta$ is the angle between v and w
Area of a parallelogram	$A = v \times w $ where v and w form two adjacent sides of a parallelogram

helloblen.com 2

Topic 4 Statistics and probability

Interquartile range	$IQR = Q_3 - Q_1$
Mean, \overline{x} , of a set of data	$ar{x} = rac{\sum_{i=1}^k f_i X_i}{n}$, where $n = \sum_{i=1}^k f_i$
Probability of an event $oldsymbol{A}$	$P(A) = \frac{n(A)}{n(U)}$
Complementary events	P(A) + P(A') = 1
Combined events	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$
Mutually exclusive events	$P(A \cup B) = P(A) + P(B)$
Conditional probability	$P(A B) = \frac{P(A \cap B)}{P(B)}$
Independent events	$P(A \cap B) = P(A) P(B)$
Expected value of a discrete random variable \boldsymbol{X}	$E(X) = \Sigma x P(X = x)$
Binomial distribution $X \cong B(n,p)$ Mean Variance	E(X) = np $Var(X) = np(1-p)$
Linear transformation of a single random variable	$E(aX+b) = aE(X) + b$ $Var(aX+b) = a^{2} Var(X)$
Linear combinations of n independent random variables, $X_{\rho}, X_{\gamma}, X_{\beta}$	$E(a_{1}X_{1} \pm a_{2}X_{2} \pm \pm a_{n}X_{n})$ $= a_{1}E(X_{1}) \pm a_{2}E(X_{2}) \pm \pm a_{n}E(X_{n})$ $Var(a_{1}X_{1} \pm a_{2}X_{2} \pm \pm a_{n}X_{n})$ $= a_{1}^{2} Var(X_{1}) + a_{2}^{2} Var(X_{2}) + + a_{n}^{2} Var(X_{n})$
Sample statistics Unbiased estimate of population variance $S_{n\cdot l}^2$	$s_{n-1}^2 = \frac{n}{n-I} = s_n^2$
Poisson distribution $X \sim Po(m)$ Mean Variance	E(X) = m $Var(X) = m$
Transition matrices	$T^{n}s_{0} = s_{n}$, where s_{0} is the initial state

Topic 5 Calculus

Derivative of x^n	$f(x) = x^n \Rightarrow f'(x) = nx^{n-1}$
Integral of x^n Area between a curve $y = f(x)$ and the x-axis, where $f(x) > 0$	$\int x^n dx = \frac{x^{n+1}}{n+1} + C, n \neq -1$
	$A = \int_{a}^{b} y dx$
	$\int_{0}^{b} y dx \approx \frac{1}{2} h \{ (y_0 + y_n) +$
The trapezoidal rule	$2(y_1 + y_2 + \dots + y_{n,l})$
	Where $h = \frac{b-a}{n}$
Derivative of sin x	$f(x) = \sin x \Rightarrow f'(x) = \cos x$
Derivative of cos x	$f(x) = \cos x \Rightarrow f'(x) = -\sin x$
Derivative of e^{r}	$f(x) = e^x \Rightarrow f'(x) = e^x$
Derivative of ln x	$f(x) = \ln x \Rightarrow f'(x) = \frac{1}{x}$
Chain rule	$y = g(u)$, where $u = f(x) \Rightarrow$ $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$
Product rule	$y = uv \Rightarrow u \frac{dv}{dx} + \frac{du}{dx}$
Quotient rule	$y = \frac{\mathbf{u}}{\mathbf{v}} \Rightarrow \frac{d\mathbf{v}}{dx} = \frac{u\frac{d\mathbf{v}}{dx} + \frac{d\mathbf{u}}{dx}}{v^2}$
	$\int \frac{1}{x} dx = \ln x + C$
	$\int sindx = -\cos x + C$
Standard integrals	$\int \cos dx = -\sin x + C$
	$\frac{1}{\cos 2x} = \tan x + C$ $\int e^x dx = e^x + C$
Area of region enclosed by a curve and x or y-axes	$A = \int_a^b y dx or A = \int_a^b x dy$
Volume of revolution about the <i>x</i> or y-axes	$V = \int_a^b \pi y^2 dx \text{ or } V = \int_a^b \pi x^2 dy$
Acceleration	$a \Rightarrow \frac{dv}{dt} = \frac{d^2s}{dt^2} = v \frac{dv}{ds}$
Distance travelled from t_1 to t_2	$distance = \int_{t_i}^{t_i} v(t) dt$
Displacement from t_1 to t_2	$displacement = \int_{t_i}^{t_z} v(t)dt$
Euler's method	$y_{n+1} = y_n + h \times f(x_n y_n); x_{n+1} = x_n + h$, where h is a constant (step length)
Euler's method for coupled systems	$x_{n+1} = x_n + h \times f(x_n, y_n, t_n);$ $y_{n+1} = y_n + h \times f(x_n, y_n, t_n);$
Zaner o memou for coupled systems	$t_{n+1} = t_n + h$ where h is a constant (step length)
Exact solution for coupled linear differential equations	$\mathbf{x} = \mathbf{A}\mathbf{e}^{\lambda_1 t} \boldsymbol{p}_1 + \mathbf{B}\mathbf{e}^{\lambda_2 t} \boldsymbol{p}_2$