Blen | Physics Data Booklet

Mathematical equations

Area of a circle	$A=\pi r^{2}$, where r is the radius
Circumference of a circle	$C=2 \pi r$, where r is the radius
Surface area of a sphere	$A=4 \pi r^{2}$, where r is the radius
Volume of a sphere	$V=\frac{4}{3} \pi r^{3}$, where r is the radius

Fundamental constants

Quantity	Symbol	Approximate value
Acceleration of free fall (Earth's surface)	g	$9.81 \mathrm{~ms}^{-2}$
Gravitational constant	G	$6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$
Avogadro's constant	N_{A}	$6.02 \times 10^{23} \mathrm{~mol}^{-1}$
Gas constant	R	$8.31 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
Boltzmann's constant	k_{B}	$1.38 \times 10^{-23} \mathrm{JK}^{-1}$
Stefan-Boltzmann constant	σ	$5.67 \times 10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{-4}$
Coulomb constant	k	$8.99 \times 10^{9} \mathrm{Nm}^{2} \mathrm{C}^{-2}$
Permittivity of free space	ε_{0}	$8.85 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}$
Permeability of free space	μ_{0}	$4 \pi \times 10^{-7} \mathrm{TmA}^{-1}$
Speed of light in vacuum	c	$3.00 \times 10^{8} \mathrm{~ms}^{-1}$
Planck's constant	h	$6.63 \times 10^{-34} \mathrm{Js}$
Elementary charge	e	$1.60 \times 10^{-19} \mathrm{C}$
Electron rest mass	m_{e}	$\begin{gathered} 9.110 \times 10^{-31} \mathrm{~kg}=0.000549 \mathrm{u} \\ =0.511 \mathrm{MeVc}^{-2} \end{gathered}$
Proton rest mass	m_{p}	$\begin{gathered} 1.673 \times 10^{-27} \mathrm{~kg}=1.007276 \mathrm{u} \\ =938 \mathrm{MeVc}^{-2} \end{gathered}$
Neutron rest mass	m_{n}	$\begin{gathered} 1.675 \times 10^{-27} \mathrm{~kg}=1.008665 \mathrm{u} \\ =940 \mathrm{MeVc}^{-2} \end{gathered}$
Unified atomic mass unit	u	$1.661 \times 10^{-27} \mathrm{~kg}=931.5 \mathrm{MeVc}^{-2}$
Solar constant	S	$1.36 \times 10^{3} \mathrm{Wm}^{-2}$
Fermi radius	R_{0}	$1.20 \times 10^{-15} \mathrm{~m}$

Unit conversions

1 radian $(\mathrm{rad})=\frac{180^{\circ}}{\pi}$
Temperature $(\mathrm{K})=$ temperature $\left({ }^{\circ} \mathrm{C}\right)+273$
1 light year $(\mathrm{ly})=9.46 \times 10^{15} \mathrm{~m}$
1 parsec $(\mathrm{pc})=3.261 \mathrm{y}$
1 astronomical unit $(\mathrm{AU})=1.50 \times 10^{11} \mathrm{~m}$
1 kilowatt-hour $(\mathrm{kWh})=3.60 \times 10^{6} \mathrm{~J}$
hc $=1.99 \times 10^{-25} \mathrm{Jm}=1.24 \times 10^{-6} \mathrm{eVm}$

Metric (SI) multipliers

Prefix	Abbreviation	Value
peta	P	10^{15}
tera	T	10^{12}
giga	G	10^{9}
mega	M	10^{6}
kilo	k	10^{3}
hecto	h	10^{2}
deca	da	10^{1}
deci	c	10^{-1}
centi	m	10^{-2}
milli	μ	10^{-3}
micro	n	10^{-6}
nano	p	10^{-9}
pico	f	10^{-12}
femto		10^{-15}

Electrical circuit symbols

cell		battery		
ac supply	$\bigcirc \sim 0$	switch		
voltmeter		ammeter		
resistor	$\square-$	variable resistor	$-\square$	
lamp		potentiometer		
light-dependent resistor (LDR)		thermistor		
transformer	$3 \\| \xi$	heating element	$-\square 1 \square-$	
diode	-1	capacitor	$-\mid+$	

Equations-Core

Note: All equations relate to the magnitude of the quantities only. Vector notation has not been used.

5.1	Electric fields						Heating effect of electric currents			
		$I=$ $=k$ $=$ $V=$ $E=$ $=n$					Kir P R $\frac{1}{R_{t o t}}$	hoff $\Sigma V=$ $I=0$ R $=V I$ ${ }_{a l}=R$ $=\frac{1}{R}$ $\varrho=$	cuit 1 oop) ction $R=\frac{V}{R}$ $R_{2}+$ $\frac{1}{R_{2}}$ A	aws: $\frac{V^{2}}{R}$ $+\ldots$
5.3	Electric cells					5.4	Magnetic effects of electric currents			
$\varepsilon=I(R+r)$						$\begin{aligned} & F=q v B \sin \theta \\ & F=B I L \sin \theta \end{aligned}$				
6.1 Circular motion						6.2 Newton's law of gravitation				
$\begin{gathered} v=\omega r \\ a=\frac{v^{2}}{r}=\frac{4 \pi^{2} r}{T^{2}} \\ F=\frac{m v^{2}}{r}=m \omega^{2} r \end{gathered}$						$\begin{gathered} F=G \frac{M m}{r^{2}} \\ g=\frac{F}{m} \\ g=G \frac{M}{r^{2}} \end{gathered}$				
Discrete energy and radioactivity						.2 Nuclear reactions				
$\begin{aligned} & E=h f \\ & \lambda=\frac{h c}{E} \end{aligned}$						$\Delta E=\Delta m c^{2}$				
7.3 The structure of matter										
	harge	Quarks		Baryon number		Charge		Leptons		
	$\frac{2}{2}$ e	,	t			-1		e	μ	τ
	$\frac{1}{3} \mathrm{e}$	d	b				0	$\mathrm{v}_{\text {e }}$	V_{μ}	v_{τ}
All quarks have a strangeness number of 0 except the strange quark that has a strangeness number of -1						All leptons have a lepton number of 1 and antileptons have a lepton number of -1				
		Gravitational			Weak		Electromagnetic			Strong
Parti expe	icles riencing		All		Qua lept			harge		Quarks, gluons
Parti medi	icles ating	Graviton			$\mathrm{W}^{+}, \mathrm{W}^{-}, \mathrm{Z}^{0}$		γ			Gluons
8.1 Energy sources						8.2 Thermal energy transfer				
$\begin{aligned} & \text { power }=\frac{\text { energy }}{\text { time }} \\ & \text { power }=\frac{1}{2} A \varrho v^{3} \end{aligned}$						$\begin{gathered} \lambda_{\text {max }}(\text { metres })=\frac{2.90 \times 10^{-3}}{T(\text { kelvin })} \\ \quad I=\frac{\text { power }}{A} \\ \text { lbedo }=\frac{\text { total scattered power }}{\text { total incident power }} \end{gathered}$				

Equations-AHL

Equations-Options

A. 1	The beginnings of relativity	A. 2	Lorentz transformations
	$\begin{aligned} & x^{\prime}=x-v t \\ & u^{\prime}=u-v \end{aligned}$	$\begin{gathered} \gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \\ x^{\prime}=\gamma(x-v t) ; \Delta x^{\prime}=\gamma(\Delta x-v \Delta t) \\ t^{\prime}=\gamma\left(t-\frac{v x}{c^{2}}\right) ; \Delta t^{\prime}=\gamma\left(\Delta t-\frac{v \Delta x}{c^{2}}\right) \end{gathered}$	
A. 3	Spacetime diagrams	$\begin{aligned} & u^{\prime}=\frac{u-v}{1-\frac{u v}{c^{2}}} \\ & \Delta t=\gamma \Delta t_{0} \end{aligned}$	
$\theta=\tan ^{-1}\left(\frac{v}{c}\right)$			$\begin{gathered} \Delta t=\gamma \Delta t_{0} \\ L=\frac{L}{\gamma}^{\gamma} \\ \left(c t^{\prime}\right)^{2}-\left(x^{\prime}\right)^{2}=(c t)^{2}-(x)^{2} \end{gathered}$
A. 4	Relativistic mechanics (HL only)	A. 5 General relativity (HL only)	
	$\begin{gathered} E=\gamma m_{o} c^{2} \\ E_{o}=m_{o} c^{2} \\ E_{K}=(\gamma-1) m_{o} c^{2} \\ p=\gamma m_{o} v \\ E^{2}=p^{2} c^{2}+m_{o}^{2} c^{4} \\ q V=\Delta E_{K} \end{gathered}$		$\frac{\Delta f}{f}=\frac{g \Delta h}{c^{2}}$ $\begin{aligned} & R_{s}=\frac{2 G M}{c^{2}} \\ & \Delta t=\frac{\Delta t_{\theta}}{\sqrt{1-\frac{R}{r}}} \end{aligned}$

B. 3Fluids and fluid dynamics (HL only)	B. 4Forced vibrations and resonance (HL only)
$B=\varrho_{f} V g$	
$P=P_{o}+\varrho g d$	$Q=2 \pi \frac{\text { energy stored }}{\text { energy dissipated per cycle }}$
$A v=$ constant	$Q=2 \pi \times$ resonant frequency
$\frac{1}{2} \varrho v^{2}+\varrho g z+p=$ constant	$\times \frac{\text { energy stored }}{\text { power loss }}$
$F_{D}=6 \pi \eta r v$	
$R=\frac{v r \varrho}{\eta}$	

C. 1	Introduction to imaging	C. 2	Imaging instrumentation
$\frac{1}{f}=\frac{1}{v}+\frac{1}{u}$$P=\frac{1}{f}$$m=\frac{h_{i}}{h_{o}}=-\frac{v}{u}$$M=\frac{\theta_{i}}{\theta_{o}}$$M_{\text {near point }}=\frac{D}{f}+1 ; M_{\text {inffnity }}=\frac{D}{f}$			$M=\frac{f_{0}}{f_{e}}$
		C. 3	Fibre optics
			$\begin{gathered} \quad n=\frac{1}{\sin c} \\ \text { attenuation }=10 \log \frac{I}{I_{0}} \end{gathered}$
		C. 4	Medical imaging (HL only)
			$\begin{gathered} L_{I}=10 \log \frac{I_{I}}{I_{o}} \\ I=I_{0} e^{-\mu x} \end{gathered}$
			$\mu x_{\frac{1}{2}}=\operatorname{In} 2$
			$Z=\varrho c$

D. 1	Stellar quantities	D. 2	Stellar characteristics and stellar evolution
	$\begin{aligned} d(\text { parsec }) & =\frac{1}{p(\text { arc-second })} \\ L & =\sigma A T^{4} \\ b & =\frac{L}{4 \pi d^{2}} \end{aligned}$		$\begin{aligned} \lambda_{\max } T & =2.9 \times 10^{-3} \mathrm{mK} \\ L & \propto M^{3.5} \end{aligned}$
D. 3	Cosmology	D. 5	Further cosmology (HL only)
	$\begin{gathered} z=\frac{\Delta \lambda}{\lambda_{0}} \approx \frac{v}{c} \\ z=\frac{R}{R_{0}}-1 \\ v=H_{0} d \\ T \approx \frac{1}{H_{0}} \end{gathered}$		$\begin{gathered} v=\sqrt{\frac{4 \pi G \varrho}{3}} r \\ \varrho_{c}=\frac{3 H^{2}}{8 \pi G} \end{gathered}$

